
All important but hidden information
about your table and table data in
PostgreSQL

Presented By :-
	 	 	 	 Sachin Kotwal
	 	 	 	 Rajkumar Raghuwanshi

Agenda

• Introduction to PostgreSQL System Columns

• Data Storage and File System Representation

• Beyond the * data from the table

• Understanding Key System Columns in detail
• ctid
• tableoid
• xmin and xmax
• cmin and cmax 

Understanding System Columns

Understanding System Columns
What is that 0 & 1??
The first number is OID and OID is always 0.
Since PostgreSQL 12, OIDs are no longer automatically assigned by default. The
'0' indicates no OID was assigned for row.

Another digit 1 is for insertion of metadata event though there is no user define
column.

Details added by the PostgreSQL system
So lets try one insert with real data

What will be size of table?

Details added by the PostgreSQL system

Some background on our table

Things to notice: Access method and Size

Remember: SELECT * FROM test;
* Means everything but without the system columns.

Details added by the PostgreSQL system

	 	 	 The two user defined columns we created

Details added by the PostgreSQL system

	 	 	 	 	 	 	 Stuff added for us!

Details added by the PostgreSQL system
What the system added
Remember 18510 for later!!!

Lets find out, where did the table data go with attrelid?

Where does data resides on file system
Where did that 18510 insert go?

What is in the data file

Not obvious where the ‘id’ went. But we can see where the ‘data’ is!

More data …
Add a second row, start to see system columns

Before that let’s quicky check the size again

Beyond the * data

Every table has several system columns that are implicitly defined by the
system. These names cannot be used as names of user-defined columns.

You do not really need to be concerned about these columns; just know they
exist.

ctid
• GPS coordinate for every row in your table.  

• (1,3) ->
• The first number is the page number (block number in the table file)
• The second number is the row's position within that page
• So (1,3) means: page 1, row position 3

• CTIDs are not permanent! They can and will change when:
• You run VACUUM FULL
• The row gets updated

• Do NOT use CTIDs as long-term row identifiers.

• CTIDs are useful for:
• Debugging
• Understanding how PostgreSQL manages your data

ctid

tableoid
• unique ID card for your table

• TableOID tells us which table, a row belongs to [unnecessary?]

• Becomes incredibly valuable
• When working with inherited tables
• When dealing with partitioned tables
• When you need to join system catalogs to get table metadata”

• Use Case: For a large partitioned table {orders by year}:
• Track which partition holds specific orders
• Monitor partition usage
• Troubleshoot data distribution issues

tableoid

cmin and cmax

• Line numbers in your transaction's story.

• cmin : The command identifier (starting at zero) within the inserting
transaction.

• cmax : The command identifier within the deleting transaction, or zero.

• RESET to 0 for each new transaction.

• Use them for debugging complex transactions

xmin
• It's crucial for PostgreSQL's MVCC (Multi-Version Concurrency Control) system

• To identify different versions of the same row, PostgreSQL marks each of them with two values -
XMIN, and XMAX to define the ‘validity’ of each row version.

• XMIN -> birth certificate for each row in your database

• The identity (transaction ID) of the inserting transaction for this row version.

• When you insert a row
• The system assigns the current transaction ID as XMIN.
• Other sessions querying the table will:

• See this row only if their transaction started after yours committed
• Not see it if their transaction started before yours committed [REPEATABLE READ]

xmax
• XMAX -> death certificate for a row version
• The identity (transaction ID) of the deleting transaction, or zero for an

undeleted row version.
• XMAX can tell us several things:

• XMAX = 0:
• Row version is currently active
• No transaction has marked it for update or delete

• XMAX = transaction_id:
• Row might be deleted OR updated
• Transaction might be in progress
• Transaction might have rolled back
• Transaction might have completed but row remains visible

xmin and xmax

Terminal #1

Terminal #2 (not in the transaction)

Xmax > 0 is telling us another version of the data
is out there and the transaction if is 1428.
Also note the value of column z for id =1 & id = 7

Terminal #3

Back to Terminal #1 ; still in transaction

Because there was no lock on the rows in
the transaction for Terminal number 3,
xmax = 0;
Xmin was incremented

Back to Terminal #2

	 HANGS!!!

•Gets blocked waiting for Transaction 1428 to commit

Terminal 1 Terminal 2

 Terminal 3

Thank you ….!!!

